Month: July 2019

Case Study: Lawrence Livermore National Laboratory

Lawrence Livermore National Laboratory is one of three federally funded research and development centers operated by the U.S. Department of Energy. It is located in Livermore, California. Livermore is about 40 miles east of the heart of San Francisco. Its primary duty is ensuring the safety, security and reliability of the United States nuclear weapons through the application of advanced science, engineering and technology.

Sierra Supercomputer

One of newest projects at LLNL is the installation of the Sierra supercomputer. It was completed in 2018. Sierra is very similar in architecture to the Summit supercomputer built for the Oak Ridge National Laboratory in Tennessee. It is operated in conjunction with the United States National Nuclear Security Administration.

Sierra is just one of several supercomputers in operation at LLNL. They are all located in the Livermore Computing Complex. It operates in just under 10,000 square feet of space at the laboratory. The Computing Complex handles both classified and unclassified national security programs. Sierra is currently ranked as the number two supercomputer in the world. It has a sustained maximum performance of 94.6 petaflops per second. A petaflop is a unit of computing speed equal to one thousand million million (1015) floating-point operations per second. However, a more powerful supercomputer is already in development at LLNL. It will be named El Capitan.

Sierra is completely cut off from any other network. This practice is known as Air-Gapping. This was done so that Sierra will operate in a classified manner. Sierra will be trying to answer questions about our current nuclear arsenal. The arsenal cannot be tested because of a nuclear non-proliferation treaty signed by the US in 1970. Sierra will tackle this issue by modeling and running simulations.

Earthquake Risk

One of the challenges LLNL faces is its location. It is located in a high-risk seismic region of Northern California, the San Francisco Bay Area. There are seven major earthquake faults in the San Francisco Bay area: The San Gregorio, San Andreas, Hayward, Calaveras, Rodgers Creek, Concord-Green Valley, and Greenville faults. This means that the Livermore Computing Complex could experience damage from a seismic event occurring on one of these faults, or even one that is not listed. According to the USGS, the San Francisco Bay area has a high probability of experiencing an earthquake of at least 6.7 magnitude sometime in the next 30 years.

Seismic Solution

This has been remedied for Sierra as well as the other supercomputers in the Livermore Computing Complex. Since 2011, LLNL has been installing ISO-Base™ platforms underneath their server racks. ISO-Base™ was developed using proprietary base isolation technology. Its patented Ball-N-Cone™ isolator protects valuable IT equipment by decoupling strong seismic shock and vibrations away from sensitive components.

ISO-Base™ currently protects nearly one half trillion dollars of IT equipment in over 30 countries. For nearly 20 years, ISO-Base™ has been tested and proven in significant real-world events in Japan, Peru, New Zealand, Nepal, and many others without failures.

LLNL chose to protect the security of their entire supercomputing complex with ISO-Base™ platforms. This helps ensure the performance and the operational continuity of Sierra. Shouldn’t you?

SoCal encounters more than just Fireworks over the 4th of July holiday

Los Angeles residents experienced a different kind of excitement over the holiday weekend. The region was hit by two large earthquakes with epicenters about 180 miles from the San Andreas fault and about 150 miles from Downtown Los Angeles in the Searles Valley near Ridgecrest, CA.

The first quake struck Thursday morning at 10:33 AM with a magnitude of 6.4. This turned out to be a foreshock to a bigger 7.1 magnitude quake shook the region on Friday at 8:19 PM, according to the USGS. Both quakes were felt across much of Southern California, parts of Arizona and Nevada, as far north as the San Francisco Bay Area and Sacramento, and as far south as Baja California, Mexico

Since then, there has been a series of aftershocks, including five measuring 5 to 5.4 on the Richter magnitude scale. At least one magnitude 3 aftershock rattled the area on Monday morning, according to the USGS.

Although the quakes were felt in parts of 4 states, damage was mostly contained to the Ridgecrest region and there were no fatalities. In contrast, the 6.7 magnitude Northridge shaker in 1994 killed more than 50 people and caused in excess of $40 billion in damage. Like Northridge, the two Ridgecrest quakes occurred on a previously unknown faults.

Both substantial earthquakes not only damaged roads and kindled fires, but also left a rupture in the Earth so large it could be seen from space. Before and after photos were taken by a satellite on July 4 and 6. They show a rupture in the Earth’s crust close to the epicenter of Friday’s 7.1 magnitude quake.

July 4th

July 6th

Had these earthquakes occurred on a different unknown fault say within 100 miles of Downtown Los Angeles or the Bay Area, damage might have been catastrophic.

Last year, a simulation was run by Berkley, called the HayWired Scenario. This scenario was run to give a striking, realistic depiction of a large Bay Area quake in today’s world, taking into account the wireless and interconnected Bay Area. The result calculated approximately 8 hundred possible deaths and more than 18 thousand injuries. It also predicted about 450 large fires near the epicenter and eighty-three billion in property and business losses.

The main reason why the scenario was run, was to help the public know what to expect when an event like this happens as well as encourage them to prepare for the inevitable large quake. In light of the recent seismic events, researchers at the USGS (United States Geological Survey) wanted to reiterate the prediction they made after the Haywired simulation. They believe an earthquake of a magnitude of 6.7 or higher will strike the San Francisco Bay area along the San Andreas fault zone before 2030.

If you operate a data center, hospital or laboratory and you aren’t prepared, contact us. WorkSafe Technologies is the global leader in seismic protection for critical systems.